Polyhedral Oligomeric Silsesquioxane‐Based Nanoparticles for Efficient Chemotherapy of Glioblastoma

Author:

Zhong Xiangyang1,Wei Gang23,Liu Boyang1,Wang Chenyang1,Wang Juan2,Lu Yong3,Cui Wenguo2ORCID,Guo Hongbo1

Affiliation:

1. Neurosurgery Center The National Key Clinical Specialty The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration The Neurosurgery Institute of Guangdong Province Zhujiang Hospital Southern Medical University Guangzhou 510515 P. R. China

2. Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200025 P. R. China

3. Department of Radiology Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200025 P. R. China

Abstract

AbstractGlioblastoma (GBM) is the most common lethal brain tumor with dismal treatment outcomes and poor response to chemotherapy. As the regulatory center of cytogenetics and metabolism, most tumor chemotherapeutic molecules exert therapeutic effects in the nucleus. Nanodrugs showing the nuclear aggregation effect are expected to eliminate and fundamentally suppress tumor cells. In this study, a nanodrug delivery system based on polyhedral oligomeric silsesquioxane (POSS) is introduced to deliver drugs into the nuclei of GBM cells, effectively enhancing the therapeutic efficacy of chemotherapy. The nanoparticles are modified with folic acid and iRGD peptides molecules to improve their tumor cell targeting and uptake via receptor‐mediated endocytosis. Nuclear aggregation allows for the direct delivery of chemotherapeutic drug temozolomide (TMZ) to the tumor cell nuclei, resulting in more significant DNA damage and inhibition of tumor cell proliferation. Herein, TMZ‐loaded POSS nanoparticles can significantly improve the survival of GBM‐bearing mice. Therefore, the modified POSS nanoparticles may serve as a promising drug‐loaded delivery platform to improve chemotherapy outcomes in GBM patients.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3