Affiliation:
1. College of Chemistry and Materials Science Sichuan Normal University Chengdu 610066 China
2. Institute for Carbon Neutralization College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 China
3. Centre for Medical and Industrial Ultrasonics James Watt School of Engineering University of Glasgow Glasgow G12 8QQ Scotland
Abstract
AbstractAmmonium vanadates, featuring an N─H···O hydrogen bond network structure between NH4+ and V─O layers, have become popular cathode materials for aqueous zinc‐ion batteries (AZIBs). Their appeal lies in their multi‐electron transfer, high specific capacity, and facile synthesis. However, a major drawback arises as Zn2+ ions tend to form bonds with electronegative oxygen atoms between V─O layers during cycling, leading to irreversible structural collapse. Herein, Li+ pre‐insertion into the intermediate layer of NH4V4O10 is proposed to enhance the electrochemical activity of ammonium vanadate cathodes for AZIBs, which extends the interlayer distance of NH4V4O10 to 9.8 Å and offers large interlaminar channels for Zn2+ (de)intercalation. Moreover, Li+ intercalation weakens the crystallinity, transforms the micromorphology from non‐nanostructured strips to ultrathin nanosheets, and increases the level of oxygen defects, thus exposing more active sites for ion and electron transport, facilitating electrolyte penetration, and improving electrochemical kinetics of electrode. In addition, the introduction of Li+ significantly reduces the bandgap by 0.18 eV, enhancing electron transfer in redox reactions. Leveraging these unique advantages, the Li+ pre‐intercalated NH4V4O10 cathode exhibits a high reversible capacity of 486.1 mAh g−1 at 0.5 A g−1 and an impressive capacity retention rate of 72% after 5,000 cycles at 5 A g−1.
Funder
Natural Science Foundation of Sichuan Province
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献