Simultaneous High Ionic Conductivity and Lithium‐Ion Transference Number in Single‐Ion Conductor Network Polymer Enabling Fast‐Charging Solid‐State Lithium Battery

Author:

Wang Yongyin1,Sun Qiyue1,Zou Junlong1,Zheng Yansen1,Li Jiashen1,Zheng Mingtao12,Liu Yingliang12,Liang Yeru12ORCID

Affiliation:

1. Key Laboratory for Biobased Materials and Energy of Ministry of Education Guangdong Provincial Engineering Technology Research Center for Optical Agriculture College of Materials and Energy South China Agricultural University Guangzhou 510642 P. R. China

2. Guangdong Laboratory of Lingnan Modern Agriculture Guangzhou 510642 P. R. China

Abstract

AbstractDeveloping solid‐state electrolyte with sufficient ionic conduction and flexible‐intimate interface is vital to advance fast‐charging solid‐state lithium batteries. Solid polymer electrolyte yields the promise of interfacial compatibility, yet its critical bottleneck is how to simultaneously achieve high ionic conductivity and lithium‐ion transference number. Herein, single‐ion conducting network polymer electrolyte (SICNP) enabling fast charging is proposed to positively realize fast lithium‐ion locomotion with both high ionic conductivity of 1.1 × 10−3 S cm−1 and lithium‐ion transference number of 0.92 at room temperature. Experimental characterization and theoretical simulations demonstrate that the construction of polymer network structure for single‐ion conductor not only facilitates fast hopping of lithium ions for boosting ionic kinetics, but also enables a high dissociation level of the negative charge for lithium‐ion transference number close to unity. As a result, the solid‐state lithium batteries constructed by coupling SICNP with lithium anodes and various cathodes (e.g., LiFePO4, sulfur, and LiCoO2) display impressive high‐rate cycling performance (e.g., 95% capacity retention at 5 C for 1000 cycles in LiFePO4|SICNP|lithium cell) and fast‐charging capability (e.g., being charged within 6 min and discharged over than 180 min in LiCoO2|SICNP|lithium cell). Our study provides a prospective direction for solid‐state electrolyte that meets the lithium‐ion dynamics for practical fast‐charging solid‐state lithium batteries.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3