Niobium‐Carbide MXene Modified Hybrid Hole Transport Layer Enabling High‐Performance Organic Solar Cells Over 19%

Author:

Deng Baozhong1,Lian Hong2,Xue Baotong2,Song Ruichen3,Chen Shi3,Wang Zihan3,Xu Tao1,Dong Hongliang4,Wang Shenghao3ORCID

Affiliation:

1. Sino‐European School of Technology Shanghai University Shanghai 200444 P. R. China

2. School of Mechatronic Engineering and Automation Shanghai University Shanghai 200444 P. R. China

3. Materials Gerome Institute Shanghai University Shanghai 200444 P. R. China

4. Center for High Pressure Science and Technology Advanced Research Shanghai 201203 P. R. China

Abstract

AbstractNiobium‐carbide (Nb2C) MXene as a new 2D material has shown great potential for application in photovoltaics due to its excellent electrical conductivity, large surface area, and superior transmittance. In this work, a novel solution‐processable poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)‐Nb2C hybrid hole transport layer (HTL) is developed to enhance the device performance of organic solar cells (OSCs). By optimizing the doping ratio of Nb2C MXene in PEDOT:PSS, the best power convention efficiency (PCE) of 19.33% can be achieved for OSCs based on the ternary active layer of PM6:BTP‐eC9:L8‐BO, which is so far the highest value among those of single junction OSCs using 2D materials. It is found that the addition of Nb2C MXene can facilitate the phase separation of the PEDOT and PSS segments, thus improving the conductivity and work function of PEDOT:PSS. The significantly enhanced device performance can be attributed to the higher hole mobility and charge extraction capability, as well as lower interface recombination probabilities generated by the hybrid HTL. Additionally, the versatility of the hybrid HTL to improve the performance of OSCs based on different nonfullerene acceptors is demonstrated. These results indicate the promising potential of Nb2C MXene in the development of high‐performance OSCs.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3