Affiliation:
1. Beijing Advanced Innovation Center for Materials Genome Engineering Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry and Chemical Engineering School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
Abstract
AbstractFabricating COFs‐based electrocatalysts with high stability and conductivity still remains a great challenge. Herein, 2D polyimide‐linked phthalocyanine COF (denoted as NiPc‐OH‐COF) is constructed via solvothermal reaction between tetraanhydrides of 2,3,9,10,16,17,23,24‐octacarboxyphthalocyaninato nickel(II) and 2,5‐diamino‐1,4‐benzenediol (DB) with other two analogous 2D COFs (denoted as NiPc‐OMe‐COF and NiPc‐H‐COF) synthesized for reference. In comparison with NiPc‐OMe‐COF and NiPc‐H‐COF, NiPc‐OH‐COF exhibits enhanced stability, particularly in strong NaOH solvent and high conductivity of 1.5 × 10−3 S m−1 due to the incorporation of additional strong interlayer hydrogen bonding interaction between the O−H of DB and the hydroxy “O” atom of DB in adjacent layers. This in turn endows the NiPc‐OH‐COF electrode with ultrahigh CO2‐to‐CO faradaic efficiency (almost 100%) in a wide potential range from −0.7 to −1.1 V versus reversible hydrogen electrode (RHE), a large partial CO current density of −39.2 mA cm−2 at −1.1 V versus RHE, and high turnover number as well as turnover frequency, amounting to 45 000 and 0.76 S−1 at −0.80 V versus RHE during 12 h lasting measurement.
Funder
National Postdoctoral Program for Innovative Talents
University of Science and Technology Beijing
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献