Affiliation:
1. School of Biomedical Engineering Southern Medical University 1023 Shatai South Road, Baiyun Guangzhou Guangdong 510515 China
2. Medical Imaging Center Nanfang Hospital Southern Medical University 1023 Shatai South Road, Baiyun Guangzhou Guangdong 510515 China
3. Department of Biomedical Science BK21 FOUR Program in Biomedical Science and Engineering Inha University College of Medicine Incheon 22212 South Korea
Abstract
AbstractMagnetic resonance imaging contrast agents are frequently used in clinics to enhance the contrast between diseased and normal tissues. The previously reported poly(acrylic acid) stabilized exceedingly small gadolinium oxide nanoparticles (ES‐GdON‐PAA) overcame the problems of commercial Gd chelates, but limitations still exist, i.e., high r2/r1 ratio, long blood circulation half‐life, and no data for large scale synthesis and formulation optimization. In this study, polymaleic acid (PMA) is found to be an ideal stabilizer to synthesize ES‐GdONs. Compared with ES‐GdON‐PAA, the PMA‐stabilized ES‐GdON (ES‐GdON‐PMA) has a lower r2/r1 ratio (2.05, 7.0 T) and a lower blood circulation half‐life (37.51 min). The optimized ES‐GdON‐PMA‐9 has an exceedingly small particle size (2.1 nm), excellent water dispersibility, and stability. A facile, efficient, and environmental friendly synthetic method is developed for large‐scale synthesis of the ES‐GdONs‐PMA. The weight of the optimized freeze–dried ES‐GdON‐PMA‐26 synthesized in a 20 L of reactor reaches the kilogram level. The formulation optimization is also finished, and the concentrated ES‐GdON‐PMA‐26 formulation (CGd = 100 mm) after high‐pressure steam sterilization possesses eligible physicochemical properties (i.e., pH value, osmolality, viscosity, and density) for investigational new drug application.
Funder
National Natural Science Foundation of China
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献