Affiliation:
1. Institute of Medical Engineering Department of Biophysics School of Basic Medical Sciences Health Science Center Xi'an Jiaotong University Xi'an 710061 China
2. Department of Ophthalmology The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an 710004 China
Abstract
AbstractPeroxidase (POD) Nanozyme‐based hydrogen peroxide (H2O2) detection is popular, but hardly adapt to high concentration of H2O2 owing to narrow linear range (LR) and low LR maximum. Here, a solution of combining POD and catalase (CAT) is raised to expand the LR of H2O2 assay via decomposing part of H2O2. As a proof of concept, a cascade enzyme system (rGRC) is constructed by integrating ruthenium nanoparticles (RuNPs), CAT and graphene together. The rGRC‐based sensor does perform an expanded LR and higher LR maximum for H2O2 detection. Meanwhile, it is confirmed that LR expansion is closely associated with apparent Km of rGRC, which is determined by the relative enzyme activity between CAT and POD both in theory and in experiment. At last, rGRC is successfully used to detect high concentration of H2O2 (up to 10 mm) in contact lens care solution, which performs higher assay accuracy (close to 100% recovery at 10 mm of H2O2) than traditional POD nanozymes. This study brings up a kind of POD/CAT cascade enzyme system and provides a new concept for accurate and facile H2O2 detection. Additionally, it replenishes a new enzyme‐substrate model of achieving the same pattern with competitive inhibition in enzyme reactions.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献