High Thermal Stability and Low Thermal Resistance of Large Area GaN/3C‐SiC/Diamond Junctions for Practical Device Processes

Author:

Kagawa Ryo1,Cheng Zhe2ORCID,Kawamura Keisuke3,Ohno Yutaka4ORCID,Moriyama Chiharu5,Sakaida Yoshiki3,Ouchi Sumito3,Uratani Hiroki3,Inoue Koji4,Nagai Yasuyoshi4,Shigekawa Naoteru15ORCID,Liang Jianbo15ORCID

Affiliation:

1. Department of Electronic Information Systems Osaka City University 3‐3‐138 Sugimoto, Sumiyoshi‐Ku Osaka 558‐8585 Japan

2. School of Integrated Circuits and Frontier Science Center for Nano‐optoelectronics Peking University Beijing 100871 China

3. SiC Division Air Water Inc. 2290–1 Takibe, Toyoshina Azumino Nagano 399‐8204 Japan

4. Institute for Materials Research (IMR) Tohoku University 2145‐2 Narita Oarai Ibaraki 311‐1313 Japan

5. Department of Physics and Electronics Osaka Metropolitan University 3‐3‐138 Sugimoto, Sumiyoshi‐Ku Osaka 558‐8585 Japan

Abstract

AbstractThermal management is critical in contemporary electronic systems, and integrating diamond with semiconductors offers the most promising solution to improve heat dissipation. However, developing a technique that can fully exploit the high thermal conductivity of diamond, withstand high‐temperature annealing processes, and enable mass production is a significant challenge. In this study, the successful transfer of AlGaN/GaN/3C‐SiC layers grown on Si to a large‐size diamond substrate is demonstrated, followed by the fabrication of GaN high electron mobility transistors (HEMTs) on the diamond. Notably, no exfoliation of 3C‐SiC/diamond bonding interfaces is observed even after annealing at 1100 °C, which is essential for high‐quality GaN crystal growth on the diamond. The thermal boundary conductance of the 3C‐SiC‐diamond interface reaches ≈55 MW m−2 K−1, which is efficient for device cooling. GaN HEMTs fabricated on the diamond substrate exhibit the highest maximum drain current and the lowest surface temperature compared to those on Si and SiC substrates. Furthermore, the device thermal resistance of GaN HEMTs on the diamond substrate is significantly reduced compared to those on SiC substrates. These results indicate that the GaN/3C‐SiC on diamond technique has the potential to revolutionize the development of power and radio‐frequency electronics with improved thermal management capabilities.

Funder

New Energy and Industrial Technology Development Organization

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3