Suppressing the Intrinsic Photoelectric Response of Organic Semiconductors for Highly‐Photostable Organic Transistors

Author:

Wang Zhongwu12,Ma Yining2,Guo Shujing2,Yuan Liqian2,Hu Yongxu2,Huang Yinan2,Chen Xiaosong2,Ji Deyang2,Bi Jinshun3,Lei Yong4,Han Cheng1,Li Liqiang25ORCID,Hu Wenping25

Affiliation:

1. SZU‐NUS Collaborative Innovation Center for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China

2. Key Laboratory of Organic Integrated Circuits of Ministry of Education Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China

3. Institute of Microelectronics Chinese Academy of Sciences Beijing 100029 China

4. Fachgebiet Angewandte Nanophysik Institut für Physik & IMN MacroNano Technische Universität Ilmenau 98693 Ilmenau Germany

5. Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Fuzhou 350207 China

Abstract

AbstractSuppressing the photoelectric response of organic semiconductors (OSs) is of great significance for improving the operational stability of organic field‐effect transistors (OFETs) in light environments, but it is quite challenging because of the great difficulty in precisely modulating exciton dynamics. In this work, photostable OFETs are demonstrated by designing the micro‐structure of OSs and introducing an electrical double layer at the OS/polyelectrolyte dielectric interface, in which multiple exciton dynamic processes can be modulated. The generation and dissociation of excitons are depressed due to the small light‐absorption area of the microstripe structure and the excellent crystallinity of OSs. At the same time, a highly efficient exciton quenching process is activated by the electrical double layer at the OS/polyelectrolyte dielectric interface. As a result, the OFETs show outstanding tolerance to the light irradiation of up to 306 mW·cm−2, which far surpasses the solar irradiance value in the atmosphere (≈138 mW·cm−2) and achieves the highest photostability ever reported in the literature. The findings promise a general and practicable strategy for the realization of photostable OFETs and organic circuits.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3