A Conductive 3D Dual‐Metal π‐d Conjugated Metal–Organic Framework Fe3(HITP)2/bpm@Co for Highly Efficient Oxygen Evolution Reaction

Author:

Lin Lingtong1,Zhang Caiyun1,Yin Liwen1,Sun Yuewen1,Xing Danning2,Liu Yuanyuan1,Wang Peng1,Wang Zeyan1,Zheng Zhaoke1,Cheng Hefeng1,Dai Ying3,Huang Baibiao1ORCID

Affiliation:

1. State Key Lab of Crystal Materials Shandong University Shandong 250100 P. R. China

2. Shandong Institute of Advanced Technology Shandong 250100 P. R. China

3. School of Physics Shandong University Shandong 250100 P. R. China

Abstract

AbstractAlthough 2D π‐d conjugated metal–organic frameworks (MOFs) exhibit high in‐plane conductivity, the closely stacked layers result in low specific surface area and difficulty in mass transfer and diffusion. Hence, a conductive 3D MOF Fe3(HITP)2/bpm@Co (HITP = 2,3,6,7,10,11‐hexaiminotriphenylene) is reported through inserting bpm (4,4′‐bipyrimidine) ligands and Co2+ into the interlayers of 2D MOF Fe3(HITP)2. Compared to 2D Fe3(HITP)2 (37.23 m2 g−1), 3D Fe3(HITP)2/bpm@Co displays a huge improvement in the specific surface area (373.82 m2 g−1). Furthermore, the combined experimental and density functional theory (DFT) theoretical calculations demonstrate the metallic behavior of Fe3(HITP)2/bpm@Co, which will benefit to the electrocatalytic activity of it. Impressively, Fe3(HITP)2/bpm@Co exhibits prominent and stable oxygen evolution reaction (OER) performance (an overpotential of 299 mV vs RHE at a current density of 10 mA cm−2 and a Tafel slope of 37.14 mV dec−1), which is superior to 2D Fe3(HITP)2 and comparable to commercial IrO2. DFT theoretical calculation reveals that the combined action of the Fe and Co sites in Fe3(HITP)2/bpm@Co is responsible for the enhanced electrocatalytic activity. This work provides an alternative approach to develop conductive 3D MOFs as efficient electrocatalysts.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3