N‐Doping Induced Lattice Expansion of 1D Template Confined Ultrathin MoS2 Sheets to Significantly Enhance Lithium Polysulfides Redox Kinetics for Li–S Battery

Author:

Chen Minzhe1,Wang Nan2ORCID,Zhou Wei1,Zhu Xiaoyan1,Wu Qikai1,Lee Ming‐Hsien3,Zhao Dengke4,Ning Shunlian5,An Maozhong67,Li Ligui1

Affiliation:

1. New Energy Research Institute School of Environment and Energy South China University of Technology Higher Education Mega Center 382 East Waihuan Road Guangzhou 510006 China

2. Siyuan Laboratory Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials Department of Physics Jinan University Guangzhou Guangdong 510632 China

3. Department of Physics Tamkang University New Taipei 25137 Taiwan

4. School of Materials Science and Engineering Henan Normal University Xinxiang 453007 China

5. School of Chemistry Sun Yat‐sen University Guangzhou Guangdong 510275 China

6. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China

7. State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China

Abstract

AbstractPreparing MoS2‐based materials with reasonable structure and catalytic activity to enhance the sluggish kinetics of lithium polysulfides (LiPSs) conversion is of great significance for Li–S batteries (LSBs) but still remain a challenge. Hence, hollow nanotubes composed of N‐doped ultrathin MoS2 nanosheets (N‐MoS2 NHTs) are fabricated as efficient S hosts for LSBs by using CdS nanorods as a sacrifice template. Characterization and theoretical results show that the template effectively inhibits the excessive growth of MoS2 sheets, and N doping expands the interlayer spacing and modulates the electronic structure, thus accelerating the mass/electron transfer and enhancing the LiPSs adsorption and transformation. Benefiting from the merits, the N‐MoS2 NHTs@S cathode exhibits an excellent initial capacity of 887.8 mAh g−1 and stable cycling performances with capacity fading of only 0.0436% per cycle at 1.0 C (500 cycles). Moreover, even at high S loading that of 7.5 mg cm−2, the N‐MoS2 NHTs@S cathode also presents initial excellent areal capacity of 7.80 mAh cm−2 at 0.2 C. This study offers feasible guidance for designing advanced MoS2‐based cathode materials in LSBs.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Postdoctoral Research Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3