Conductance Quantization in 2D Semi‐Metallic Transition Metal Dichalcogenides

Author:

Lu Zhixing12,Hou Songjun3,Lin Rongjian2,Shi Jie2,Wu Qingqing3,Lin Luchun2,Shi Jia2,Yang Yang2,Lambert Colin3,Hong Wenjing2ORCID

Affiliation:

1. Engineering Research Center of Polymer Green Recycling of Ministry of Education College of Environmental and Resource Sciences Fujian Normal University Fuzhou 350117 China

2. State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering & Pen‐Tung Sah Institute of Micro‐Nano Science and Technology Xiamen University Xiamen 361005 China

3. Department of Physics Lancaster University Lancaster LA1 4YB UK

Abstract

AbstractConductance quantization of 2D materials is significant for understanding the charge transport at the atomic scale, which provides a platform to manipulate the quantum states, showing promising applications for nanoelectronics and memristors. However, the conventional methods for investigating conductance quantization are only applicable to materials consisting of one element, such as metal and graphene. The experimental observation of conductance quantization in transition metal dichalcogenides (TMDCs) with complex compositions and structures remains a challenge. To address this issue, an approach is proposed to characterize the charge transport across a single atom in TMDCs by integrating in situ synthesized 1T’‐WTe2 electrodes with scanning tunneling microscope break junction (STM‐BJ) technique. The quantized conductance of 1T’‐WTe2 is measured for the first time, and the quantum states can be modulated by stretching speed and solvent. Combined with theoretical calculations, the evolution of quantized and corresponding configurations during the break junction process is demonstrated. This work provides a facile and reliable avenue to characterize and modulate conductance quantization of 2D materials, intensively expanding the research scope of quantum effects in diverse materials.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Engineering and Physical Sciences Research Council

National Postdoctoral Program for Innovative Talents

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3