Stabilizing 4.6 V LiCoO2 via Er and Mg Trace Doping at Li‐Site and Co‐Site Respectively

Author:

Xia Jing12,Zhang Na3,Yi Ding45,Lu Fei6,Yang Yijun45,Wang Xi45,Wang Yonggang7ORCID

Affiliation:

1. College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China

2. Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361102 P. R. China

3. Institute of Molecular Plus Tianjin University Tianjin 300072 P. R. China

4. Key Laboratory of Luminescence and Optical Information Technology Department of Physics School of Physical Science and Engineering Beijing Jiaotong University Beijing 100044 P. R. China

5. Tangshan Research Institute of Beijing Jiaotong University Tangshan 063000 P. R. China

6. College of Physical Science and Technology Yangzhou University Yangzhou 225002 P. R. China

7. Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 P. R. China

Abstract

AbstractCharging LiCoO2 to high voltages yields alluring specific capacities, yet the deleterious phase‐transitions lead to significant capacity degradation. Herein, this study demonstrates a novel strategy to stabilize LiCoO2 at 4.6 V by doping with Er and Mg at the Li‐site and Co‐site, respectively, which is different from the traditional method of doping foreign elements solely at the Co‐site. Theoretical calculations and experiments jointly reveal that the inclusion of Mg2+‐dopants at the Co‐site curbs the hexagonal‐monoclinic phase transitions ≈4.2 V. However, this unintentionally compromises the stability of lattice oxygen in LiCoO2, exacerbating the undesired phase transition (O3 to H1‐3) above 4.45 V. Fascinatingly, the introduction of Er3+‐dopants into Li‐sites enhances the stability of lattice oxygen in LiCoO2, effectively mitigating phase transitions above 4.45 V. Therefore, the Er, Mg co‐doped LiCoO2 exhibits high stability over 500 cycles when tested in a half‐cell with a cut‐off voltage of 4.6 V. Furthermore, the Er, Mg‐doped LiCoO2//graphite pouch‐type full cell demonstrates a high energy density of 310.8 Wh kg−1, preserving 91.3% of its energy over 100 cycles.

Funder

Ministry of Science and Technology of the People's Republic of China

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3