Optimal Coatings of Co3O4 Anodes for Acidic Water Electrooxidation

Author:

Ta Xuan Minh Chau12,Trần‐Phú Thành12ORCID,Yuwono Jodie A.34,Nguyen Thi Kim Anh12,Bui Anh Dinh5,Truong Thien N.5,Chang Li‐chun5,Magnano Elena6,Daiyan Rahman7,Simonov Alexandr N.8,Tricoli Antonio12ORCID

Affiliation:

1. Nanotechnology Research Laboratory College of Engineering and Computer Science The Australian National University Canberra ACT 2601 Australia

2. Nanotechnology Research Laboratory Faculty of Engineering University of Sydney Sydney NSW 2006 Australia

3. School of Chemical Engineering & Advanced Materials The University of Adelaide Adelaide SA 5005 Australia

4. College of Engineering and Computer Science Australian National University Canberra ACT 2601 Australia

5. School of Engineering The Australian National University Canberra ACT 2601 Australia

6. IOM‐CNR Istituto Officina dei Materiali AREA Science Park Basovizza Trieste 34149 Italy

7. Particles and Catalysis Research Laboratory School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia

8. School of Chemistry Monash University Clayton VIC 3800 Australia

Abstract

AbstractImplementation of proton‐exchange membrane water electrolyzers for large‐scale sustainable hydrogen production requires the replacement of scarce noble‐metal anode electrocatalysts with low‐cost alternatives. However, such earth‐abundant materials often exhibit inadequate stability and/or catalytic activity at low pH, especially at high rates of the anodic oxygen evolution reaction (OER). Here, the authors explore the influence of a dielectric nanoscale‐thin oxide layer, namely Al2O3, SiO2, TiO2, SnO2, and HfO2, prepared by atomic layer deposition, on the stability and catalytic activity of low‐cost and active but insufficiently stable Co3O4 anodes. It is demonstrated that the ALD layers improve both the stability and activity of Co3O4 following the order of HfO2 > SnO2 > TiO2 > Al2O3, SiO2. An optimal HfO2 layer thickness of 12 nm enhances the Co3O4 anode durability by more than threefold, achieving over 42 h of continuous electrolysis at 10 mA cm−2 in 1 m H2SO4 electrolyte. Density functional theory is used to investigate the superior performance of HfO2, revealing a major role of the HfO2|Co3O4 interlayer forces in the stabilization mechanism. These insights offer a potential strategy to engineer earth‐abundant materials for low‐pH OER catalysts with improved performance from earth‐abundant materials for efficient hydrogen production.

Funder

Australian Research Council

Australian Renewable Energy Agency

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3