Novel Mg‐ and Ga‐doped ZnO/Li‐Doped Graphene Oxide Transparent Electrode/Electron‐Transporting Layer Combinations for High‐Performance Thin‐Film Solar Cells

Author:

Kim Jihun1,Jang Jun Sung2ORCID,Shin Seung Wook3,Park Hyeonghun4,Jeong Woo‐Lim5,Mun Seung‐Hyun5,Min Jung‐Hong5,Ma Jiyoung1,Heo Jaeyeong2,Lee Dong Seon5,Woo Jung‐Je1,Kim Jin Hyeok2ORCID,Kim Hyeong‐Jin4

Affiliation:

1. Gwangju Clean Energy Research Center Korea Institute of Energy Research (KIER) 270‐25 Samso‐ro Gwangju 61003 South Korea

2. Optoelectronic Convergence Research Center Department of Materials Science and Engineering Chonnam National University 77 Yongbong‐ro, Buk‐gu Gwangju 61186 South Korea

3. Future Agricultural Research Division Water Resource and Environment Research Group Rural Research Institute Korea Rural Community Corporation Ansan‐Si 15634 South Korea

4. Graduate School of Energy Convergence Gwangju Institute of Science and Technology 123 Cheomdangwagi‐ro, Buk‐gu Gwangju 61005 South Korea

5. School of Electrical Engineering and Computer Science Gwangju Institute of Science and Technology 123 Cheomdangwagi‐ro, Buk‐gu Gwangju 61005 South Korea

Abstract

AbstractHerein, a novel combination of Mg‐ and Ga‐co‐doped ZnO (MGZO)/Li‐doped graphene oxide (LGO) transparent electrode (TE)/electron‐transporting layer (ETL) has been applied for the first time in Cu2ZnSn(S,Se)4 (CZTSSe) thin‐film solar cells (TFSCs). MGZO has a wide optical spectrum with high transmittance compared to that with conventional Al‐doped ZnO (AZO), enabling additional photon harvesting, and has a low electrical resistance that increases electron collection rate. These excellent optoelectronic properties significantly improved the short‐circuit current density and fill factor of the TFSCs. Additionally, the solution‐processable alternative LGO ETL prevented plasma‐induced damage to chemical bath deposited cadmium sulfide (CdS) buffer, thereby enabling the maintenance of high‐quality junctions using a thin CdS buffer layer (≈30 nm). Interfacial engineering with LGO improved the Voc of the CZTSSe TFSCs from 466 to 502 mV. Furthermore, the tunable work function obtained through Li doping generated a more favorable band offset in CdS/LGO/MGZO interfaces, thereby, improving the electron collection. The MGZO/LGO TE/ETL combination achieved a power conversion efficiency of 10.67%, which is considerably higher than that of conventional AZO/intrinsic ZnO (8.33%).

Funder

Korea Institute of Energy Technology Evaluation and Planning

National Research Foundation of Korea

Gwangju Institute of Science and Technology

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3