Interplay of Depletion Forces and Biomolecular Recognition in the Hierarchical Assembly of Supramolecular Tubes

Author:

Xiu Fangyuan1,Knežević Anamarija12ORCID,Huskens Jurriaan1,Kudernac Tibor13ORCID

Affiliation:

1. Molecular Nanofabrication Group MESA+ Institute University of Twente PO Box 207 Enschede 7500 AE The Netherlands

2. Division of Organic Chemistry and Biochemistry Ruđer Bošković Institute Bijenička cesta 54 Zagreb 10000 Croatia

3. Faculty of Science and Engineering Molecular Inorganic Chemistry Stratingh Institute for Chemistry Nijenborgh 4 Groningen 9747 AG The Netherlands

Abstract

AbstractCrowding effects have a profound impact on the hierarchical organization of cellular architectures. In the fields of systems chemistry and soft matter, this effect has not received much attention so far. Here, it is explored how poly(ethylene glycol) (PEG) as a crowding agent invokes depletion forces that act on synthetic supramolecular tubes. Hence, supramolecular tubes are pushed from their random orientation into hierarchically assembled bundles due to the PEG‐induced crowded environment. The resulting morphology of formed bundled architectures can be tuned by the concentrations of both the supramolecular tubes and the PEG. The introduction of biotin groups at the surface of the tubes allows the engineering of biotin–streptavidin crosslinks between them. The order of introducing PEG and streptavidin in the system further affects the formed hierarchical assemblies, as well as their resistance toward dilution. The strategy described here provides a new route to establish hierarchically organized supramolecular architectures, combining crowding and specific biomolecular interactions, which shows the potential for controlling the structure of supramolecular materials and other soft matter systems.

Funder

European Research Council

China Scholarship Council

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3