In Situ Constructing Robust and Highly Conductive Solid Electrolyte with Tailored Interfacial Chemistry for Durable Li Metal Batteries

Author:

Jin Yingmin1,Li Yumeng1,Lin Ruifan1,Zhang Xuebai1,Shuai Yong2,Xiong Yueping1ORCID

Affiliation:

1. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and chemical engineering Harbin Institute of Technology Harbin 150001 P. R. China

2. Key Laboratory of Aerospace Thermophysics of MIIT School of Energy Science and Engineering Harbin Institute of Technology Harbin 150001 P. R. China

Abstract

AbstractEmploying nanofiber framework for in situ polymerized solid‐state lithium metal batteries (SSLMBs) is impeded by the insufficient Li+ transport properties and severe dendritic Li growth. Both critical issues originate from the shortage of Li+ conduction highways and nonuniform Li+ flux, as randomly‐scattered nanofiber backbone is highly prone to slippage during battery assembly. Herein, a robust fabric of Li0.33La0.56Ce0.06Ti0.94O3‐δ/polyacrylonitrile framework (p‐LLCTO/PAN) with inbuilt Li+ transport channels and high interfacial Li+ flux is reported to manipulate the critical current density of SSLMBs. Upon the merits of defective LLCTO fillers, TFSI confinement and linear alignment of Li+ conduction pathways are realized inside 1D p‐LLCTO/PAN tunnels, enabling remarkable ionic conductivity of 1.21 mS cm−1 (26 °C) and tLi+ of 0.93 for in situ polymerized polyvinylene carbonate (PVC) electrolyte. Specifically, molecular reinforcement protocol on PAN framework further rearranges the Li+ highway distribution on Li metal and alters Li dendrite nucleation pattern, boosting a homogeneous Li deposition behavior with favorable SEI interface chemistry. Accordingly, excellent capacity retention of 76.7% over 1000 cycles at 2 C for Li||LiFePO4 battery and 76.2% over 500 cycles at 1 C for Li||LiNi0.5Co0.2Mn0.3O2 battery are delivered by p‐LLCTO/PAN/PVC electrolyte, presenting feasible route in overcoming the bottleneck of dendrite penetration in in situ polymerized SSLMBs.

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3