Affiliation:
1. Institute for Advanced Study Shenzhen University Shenzhen Guangdong 518060 P. R. China
2. Department of Advanced Design and Systems Engineering City University of Hong Kong Kowloon Hong Kong 852 P. R. China
3. Micro/Nano Engineering Laboratory Research Institute of Tsinghua University in Shenzhen Shenzhen Guangdong 518057 P. R. China
Abstract
AbstractUsing three‐dimensional current collectors (3DCC) as frameworks for lithium metal anodes (LMAs) is a promising approach to inhibit dendrite growth. However, the intrinsically accumulated current density on the top surface and limited Li‐ion transfer in the interior of 3DCC still lead to the formation of lithium dendrites, which can pose safety risks. In this study, it reports that gradient lithiophilic structures can induce uniform lithium deposition within the interior of the 3DCC, greatly suppressing dendrite formation, as confirmed by COMSOL simulations and experimental results. With this concept, a gradient‐structured zinc oxide‐loaded copper foam (GSZO‐CF) is synthesized via an easy solution‐combustion method at low cost. The resulting Li@GSZO‐CF symmetric cells demonstrate stable cycling performance for over 800 cycles, with an ultra‐deep capacity of 10 mAh cm−2 even under an ultra‐high current density of 50 mA cm−2, the top results reported in the literature. Moreover, when combined with a LiFePO4 (LFP) cathode under a low negative/positive (N/P) capacity ratio of 2.9, the Li@GSZO‐CF||LFP full cells exhibit stable performance for 200 cycles, with a discharge capacity of 130 mAh g−1 and retention of 85.5% at a charging/discharging rate of 1C. These findings suggest a promising strategy for the development of new‐generation LMAs.
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献