A Gradient Lithiophilic Structure for Stable Lithium Metal Anodes with Ultrahigh Rate and Ultradeep Capacity

Author:

Peng Gangqiang1ORCID,Zheng Qianfeng1,Luo Geng1,Zheng Dawei1,Feng Shien‐Ping2,Khan Ubaid1,Akbar Abdul Rehman1,Luo Haimei3,Liu Fude1ORCID

Affiliation:

1. Institute for Advanced Study Shenzhen University Shenzhen Guangdong 518060 P. R. China

2. Department of Advanced Design and Systems Engineering City University of Hong Kong Kowloon Hong Kong 852 P. R. China

3. Micro/Nano Engineering Laboratory Research Institute of Tsinghua University in Shenzhen Shenzhen Guangdong 518057 P. R. China

Abstract

AbstractUsing three‐dimensional current collectors (3DCC) as frameworks for lithium metal anodes (LMAs) is a promising approach to inhibit dendrite growth. However, the intrinsically accumulated current density on the top surface and limited Li‐ion transfer in the interior of 3DCC still lead to the formation of lithium dendrites, which can pose safety risks. In this study, it reports that gradient lithiophilic structures can induce uniform lithium deposition within the interior of the 3DCC, greatly suppressing dendrite formation, as confirmed by COMSOL simulations and experimental results. With this concept, a gradient‐structured zinc oxide‐loaded copper foam (GSZO‐CF) is synthesized via an easy solution‐combustion method at low cost. The resulting Li@GSZO‐CF symmetric cells demonstrate stable cycling performance for over 800 cycles, with an ultra‐deep capacity of 10 mAh cm−2 even under an ultra‐high current density of 50 mA cm−2, the top results reported in the literature. Moreover, when combined with a LiFePO4 (LFP) cathode under a low negative/positive (N/P) capacity ratio of 2.9, the Li@GSZO‐CF||LFP full cells exhibit stable performance for 200 cycles, with a discharge capacity of 130 mAh g−1 and retention of 85.5% at a charging/discharging rate of 1C. These findings suggest a promising strategy for the development of new‐generation LMAs.

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3