MXene Crosslinked Hydrogels with Low Hysteresis Conferred by Sliding Tangle Island Strategy

Author:

Zou Jian12,Jing Xin12ORCID,Li Shitao12,Feng Peiyong12,Chen Yi12,Liu Yuejun12

Affiliation:

1. Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province Hunan University of Technology Zhuzhou 412007 China

2. National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology Hunan University of Technology Zhuzhou 412007 China

Abstract

AbstractSingle‐network hydrogels are often too fragile to withstand mechanical loading, whereas double‐network hydrogels typically exhibit significant hysteresis during cyclic stretching‐releasing process due to the presence of a sacrificial network. Consequently, it is a considerable challenge for designing hydrogels that are both low in hysteresis and high in toughness for applications requiring dynamic mechanical loads. Herein, the study introduced a novel “sliding tangle island” strategy for creating tough and low‐hysteresis hydrogels, which are prepared through in situ polymerization of highly concentrated acrylamides (AM) to form numerous entanglements within the MXene spacing without any chemical crosslinker. The MXene entangled with long polyacrylamide (PAM) chains to form tangle island that served as a relay station to transmit stress to neighboring molecular chains. This mechanism helps alleviate stress concentration and enhances energy dissipation efficiency, thereby reducing mechanical hysteresis. The resulting hydrogel exhibited exceptional properties, including high stretchability (≈900%), low hysteresis (less than 7%), high toughness (1.34 MJ m−3), and excellent sensing performance to rival the commercial hydrogel electrode. Therefore, this work sheds light on feasible design of energy dissipation structure to reduce the hysteresis of the composite hydrogels.

Funder

Hunan Provincial Innovation Foundation for Postgraduate

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3