Electrochemical Deposition for Cultivating Nano‐ and Microstructured Electroactive Materials for Supercapacitors: Recent Developments and Future Perspectives

Author:

Kumar S. Ashok1ORCID,Sahoo Surjit2ORCID,Laxminarayana Gurunatha Kargal1ORCID,Rout Chandra Sekhar13ORCID

Affiliation:

1. Centre for Nano and Material Sciences Jain (Deemed–to–be University) Jain Global Campus Kanakapura Road Bangalore Karnataka 562112 India

2. Department of Industrial and Manufacturing Systems Engineering Kansas State University Manhattan Kansas 66506 USA

3. Department of Chemical Engineering Chungbuk National University Cheongju Chungbuk 28644 Republic of Korea

Abstract

AbstractThe globe is currently dealing with serious issues related to the world economy and population expansion, which has led to a significant increase in the need for energy. One of the most promising energy devices for the next generation of energy technology is the supercapacitor (SC). Among the numerous nanostructured materials examined for SC electrodes, inorganic nanosheets are considered to be the most favorable electrode materials because of their excellent electrochemical performance due to their large surface area, very low layer thickness, and tunable diverse composition. Various inorganic nanosheets (NS) such as metal oxides, metal chalcogenides, metal hydroxides, and MXenes show substantial electrochemical activity. Herein, a comprehensive survey of inorganic NS arrays synthesized through the electrodeposition method is reported with the discussion on detailed growth mechanism and their application in the fabrication of SC electrodes/devices for powering flexible and wearable electronics appliances. To begin with, the first section will feature the various types of electrodeposition working mechanism, SC types and their working mechanisms, importance of nanosheet structure for SCs. This review gives a profound interpretation of supercapacitor electrode materials and their performances in different domains. Finally, a perspective on NS array through electrodeposition method applications in diverse fields is extensively examined.

Funder

Department of Science and Technology, Government of Kerala

Ministry of Science and ICT, South Korea

Mission on Nano Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3