Localizing Oxygen Lattice Evolutions Eliminates Oxygen Release and Voltage Decay in All‐Mn‐Based Li‐Rich Cathodes

Author:

Wu Kang12,Zhao Enyue1ORCID,Ran Peilin12,Yin Wen34,Zhang Zhigang1,Wang Bao‐Tian34,Ikeda Kazutaka56,Otomo Toshiya56,Xiao Xiaoling7,Wang Fangwei124,Zhao Jinkui128

Affiliation:

1. Songshan Lake Materials Laboratory Dongguan 523808 China

2. Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China

3. Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China

4. Spallation Neutron Source Science Center Dongguan Guangdong 523803 China

5. Institute of Materials Structure Science High Energy Accelerator Research Organization (KEK) Tokai Ibaraki 319–1106 Japan

6. J‐PARC Center High Energy Accelerator Research Organization (KEK) Tokai Ibaraki 319–1106 Japan

7. College of Materials Science and Opto‐electronic Technology Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China

8. School of Physical Sciences Great Bay University Dongguan 523808 China

Abstract

AbstractAll‐Mn‐based Li‐rich cathodes Li2MnO3 have attracted extensive attention because of their cost advantage and ultrahigh theoretical capacity. However, the unstable anionic redox reaction (ARR), which involves irreversible oxygen releases, causes declines in cycling capacity and intercalation potential, thus hindering their practical applications. Here, it is proposed that introducing stacking‐fault defects into the Li2MnO3 can localize oxygen lattice evolutions and stabilize the ARR, eliminating oxygen releases. The thus‐made cathode has a highly reversible capacity (320 mA h g−1) and achieves excellent cycling stability. After 100 cycles, the capacity retention rate is 86% and the voltage decay is practically eliminated at 0.19 mV per cycle. Attributing to the stable ARR, samples show reduced stress–strain and phase transitions. Neutron pair distribution function (nPDF) measurements indicate that there is a structure response of localized oxygen lattice distortion to the ARR and the average oxygen lattice framework is well‐preserved which is a prerequisite for the high cycle reversibility.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3