Localized Electron Density Regulation Effect for Promoting Solid–Liquid Ion Adsorption to Enhance Areal Capacitance of Micro‐Supercapacitors

Author:

Zhao Zhiwei123,Wang Zixi123,Yu Yingsong123,Hu Yi123ORCID

Affiliation:

1. Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province Zhejiang Sci‐Tech University Hangzhou 310018 China

2. Engineering Research Center for Eco‐Dying & Finishing of Textiles Ministry of Education Zhejiang Sci‐Tech University Hangzhou 310018 China

3. Zhejiang Provincial Engineering Research Center for Green and Low‐carbon Dyeing & Finishing Zhejiang Sci‐Tech University Hangzhou 310018 China

Abstract

AbstractThe development of flexible microelectronic systems requires the construction of high‐energy‐output planar micro‐supercapacitors (MSCs). Herein, the localized electron density, by introducing graphene quantum dots (GQDs) on the surface of electrodes, is regulated. The enhanced local field intensity promotes ion electrostatic adsorption at the solid–liquid interface, which significantly improves the energy density of MSCs in the confined space. Local electronic structure has been investigated from the perspective of the topological analysis of the electron localization function (ELF) and the electron density. Impressively, the edges of the simulated structure exhibit a higher electron density distribution than the CC skeleton. This finding indicates that the introduced GQDs reinforce the intrinsic electrical double‐layer capacitance (EDLC) and the oxygen‐bearing functional groups at the edge, further increasing the pseudocapacitance performance. Moreover, the edge electron aggregation effect enables the all‐carbon‐based symmetric MSCs to exhibit ultra‐high areal capacitance (21.78 mF cm−2) and excellent cycle stability (86.74% retention after 25 000 cycles). This novel surface local charge regulation strategy is also applied for intensifying ion electrostatic adsorption on Zn‐ion hybrid MSCs (polyvalent metal ions) and ion‐gel electrolyte MSCs (non‐metallic ions). With excellent planar integration, this device demonstrates excellent flexibility and has potential applications in timing and environmental monitoring.

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3