Self‐Limiting Sub‐5 nm Nanodiamonds by Geochemistry‐Inspired Synthesis

Author:

Lyu Tengteng1,Archambault Cynthia M.1,Hathaway Evan2,Zhu Xiangyu3,King Carol1,Abu‐Amara Lama1,Wang Sicheng1,Kunz Martin4,Kim Moon J.3,Cui Jingbiao2,Yao Yansun5,Yu Tony6,Officer Timothy6,Xu Man6,Wang Yanbin6,Yan Hao1ORCID

Affiliation:

1. Department of Chemistry University of North Texas Denton TX 76205 USA

2. Department of Physics University of North Texas Denton TX 76205 USA

3. Department of Materials Science and Engineering University of Texas Dallas Richardson TX 75080 USA

4. Lawrence Berkeley National Laboratory Berkely CA 94720 USA

5. Department of Physics and Engineering Physics University of Saskatchewan Saskatoon SK S7N 5E2 Canada

6. Center for Advanced Radiation Sources The University of Chicago Chicago IL 60637 USA

Abstract

AbstractControlling diamond structures with nanometer precision is fundamentally challenging owing to their extreme and far‐from‐equilibrium synthetic conditions. State‐of‐the‐art techniques, including detonation, chemical vapor deposition, mechanical grinding, and high‐pressure‐high‐temperature synthesis, yield nanodiamond particles with a broad distribution of sizes. Despite many efforts, the direct synthesis of nanodiamonds with precisely controlled diameters remains elusive. Here the geochemistry‐inspired synthesis of sub‐5 nm nanodiamonds with sub‐nanometer size deviation is described. High‐pressure‐high‐temperature treatment of uniform iron carbide nanoparticles embedded in iron oxide matrices yields nanodiamonds with tunable diameters down to 2.13 and 0.22 nm standard deviation. A self‐limiting, redox‐driven, and diffusion‐controlled solid‐state reaction mechanism is proposed and supported by in situ X‐ray diffraction, ex situ characterizations, and computational modeling. This work provides a unique mechanism for the precise control of nanostructured diamonds under extreme conditions and paves the road for the full realization of their potential in emerging technologies.

Funder

National Science Foundation

Natural Sciences and Engineering Research Council of Canada

U.S. Department of Energy

Office of Science

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3