Affiliation:
1. Department of Chemical and Biomolecular Engineering University of Maryland College Park MD 20742 USA
2. Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
Abstract
AbstractEukaryotic cells have inner compartments (organelles), each with distinct properties and functions. One mimic of this architecture, based on biopolymers, is the multicompartment capsule (MCC). Here, MCCs in which the inner compartments are chemically unique and “smart,” i.e., responsive to distinct stimuli in an orthogonal manner are created. Specifically, one compartment alone is induced to degrade when the MCC is contacted with an enzyme while other compartments remain unaffected. Similarly, just one compartment gets degraded upon contact with reactive oxygen species generated from hydrogen peroxide (H2O2). And thirdly, one compartment alone is degraded by an external, physical stimulus, namely, by irradiating the MCC with ultraviolet (UV) light. All these specific responses are achieved without resorting to complicated chemistry to create the compartments: the multivalent cation used to crosslink the biopolymer alginate (Alg) is simply altered. Compartments of Alg crosslinked by Ca2+ are shown to be sensitive to enzymes (alginate lyases) but not to H2O2 or UV, whereas the reverse is the case with Alg/Fe3+ compartments. These results imply the ability to selectively burst open a compartment in an MCC “on‐demand” (i.e., as and when needed) and using biologically relevant stimuli. The results are then extended to a sequential degradation, where compartments in an MCC are degraded one after another, leaving behind an empty MCC lumen. Collectively, this work advances the MCC as a platform that not only emulates key features of cellular architecture, but can also begin to capture rudimentary cell‐like behaviors.
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献