In Situ Polymerization of Hydrogel Electrolyte on Electrodes Enabling the Flexible All‐Hydrogel Supercapacitors with Low‐Temperature Adaptability

Author:

Zhang Yijing12,Sun Yue12,Nan Jingya1ORCID,Yang Fusheng1,Wang Zihao1,Li Yuxi1,Wang Chuchu1,Chu Fuxiang12,Liu Yupeng12,Wang Chunpeng12

Affiliation:

1. Institute of Chemical Industry of Forest Products Chinese Academy of Forestry Key Laboratory of Biomass Energy and Material Jiangsu Province Nanjing Jiangsu 210042 China

2. Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources Nanjing Forestry University Nanjing Jiangsu 210037 China

Abstract

AbstractAll‐hydrogel supercapacitors are emerging as promising power sources for next‐generation wearable electronics due to their intrinsic mechanical flexibility, eco‐friendliness, and enhanced safety. However, the insufficient interfacial adhesion between the electrode and electrolyte and the frozen hydrogel matrices at subzero temperatures largely limit the practical applications of all‐hydrogel supercapacitors. Here, an all‐hydrogel supercapacitor is reported with robust interfacial contact and anti‐freezing property, fabricated by in situ polymerizing hydrogel electrolyte onto hydrogel electrodes. The robust interfacial adhesion is developed by the synergistic effect of a tough hydrogel matrix and topological entanglements. Meanwhile, the incorporation of zinc chloride (ZnCl2) in the hydrogel electrolyte prevents the freezing of water solvents and endows the all‐hydrogel supercapacitor with mechanical flexibility and fatigue resistance across a wide temperature range of 20 °C to –60 °C. Such all‐hydrogel supercapacitor demonstrates satisfactory low‐temperature electrochemical performance, delivering a high energy density of 11 mWh cm−2 and excellent cycling stability with a capacitance retention of 90% over 10000 cycles at −40 °C. Notably, the fabricated all‐hydrogel supercapacitor can endure dynamic deformations and operate well under 2000 tension cycles even at −40 °C, without experiencing delamination and electrochemical failure. This work offers a promising strategy for flexible energy storage devices with low‐temperature adaptability.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3