Promoting Electromagnetic Wave Absorption Performance by Integrating MoS2@Gd2O3/MXene Multiple Hetero‐Interfaces in Wood‐Derived Carbon Aerogels

Author:

Shen Mengxia12ORCID,Qi Jiale1,Xu Xinyu1,Li Jinbao1,Xu Yongjian1,Yang Hao1,Gao Kun1,Huang Jianfeng2,Li Jiayin2,Shang Zhen3,Ni Yonghao45

Affiliation:

1. College of Bioresources Chemical and Materials Engineering Shaanxi University of Science and Technology Xi'an 710021 China

2. School of Material Science and Engineering Shaanxi University of Science and Technology Xi'an 710021 China

3. Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China

4. Department of Chemical Engineering University of New Brunswick Fredericton NB E3B 5A3 Canada

5. Department of Chemical and Biomedical Engineering University of Maine Orono ME 04469 USA

Abstract

AbstractMulti‐component composite materials with a magnetic‐dielectric synergistic effect exhibit satisfactory electromagnetic wave absorption performance. However, the effective construction of the structure for these multi‐component materials to fully exploit the advantages of each component remains a challenge. Inspired by natural biomass, this study utilizes wood as the raw material and successfully prepares high‐performance MoS2@Gd2O3/Mxene loaded porous carbon aerogel (MGMCA) composite material through a one‐pot hydrothermal method and carbonization treatment process. With a delicate structural design, the MGMCA is endowed with abundant heterogeneous interface structures, favorable impedance matching characteristics, and a magnetic‐dielectric synergistic system, thus demonstrating multiple electromagnetic wave loss mechanisms. Benefiting from these advantages, the obtained MGMCA exhibits outstanding electromagnetic wave absorption performance, with a minimum reflection loss of −57.5 dB at an ultra‐thin thickness of only 1.9 mm. This research proposes a reliable strategy for the design of multi‐component composite materials, providing valuable insight for the design of biomass‐based materials as electromagnetic wave absorbers.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3