Pair Interaction between Two Catalytically Active Colloids

Author:

Sharan Priyanka1,Daddi‐Moussa‐Ider Abdallah2ORCID,Agudo‐Canalejo Jaime2,Golestanian Ramin23ORCID,Simmchen Juliane14ORCID

Affiliation:

1. Chair of Physical Chemistry TU Dresden 01062 Dresden Germany

2. Max Planck Institute for Dynamics and Self‐Organization (MPIDS) 37077 Göttingen Germany

3. Rudolf Peierls Centre for Theoretical Physics University of Oxford Oxford OX1 3PU UK

4. Pure and applied chemistry University of Strathclyde G11XL Glasgow

Abstract

AbstractDue to the intrinsically complex non‐equilibrium behavior of the constituents of active matter systems, a comprehensive understanding of their collective properties is a challenge that requires systematic bottom–up characterization of the individual components and their interactions. For self‐propelled particles, intrinsic complexity stems from the fact that the polar nature of the colloids necessitates that the interactions depend on positions and orientations of the particles, leading to a 2d − 1 dimensional configuration space for each particle, in d dimensions. Moreover, the interactions between such non‐equilibrium colloids are generically non‐reciprocal, which makes the characterization even more complex. Therefore, derivation of generic rules that enable us to predict the outcomes of individual encounters as well as the ensuing collective behavior will be an important step forward. While significant advances have been made on the theoretical front, such systematic experimental characterizations using simple artificial systems with measurable parameters are scarce. Here, two different contrasting types of colloidal microswimmers are studied, which move in opposite directions and show distinctly different interactions. To facilitate the extraction of parameters, an experimental platform is introduced in which these parameters are confined on a 1D track. Furthermore, a theoretical model for interparticle interactions near a substrate is developed, including both phoretic and hydrodynamic effects, which reproduces their behavior. For subsequent validation, the degrees of freedom are increased to 2D motion and resulting trajectories are predicted, finding remarkable agreement. These results may prove useful in characterizing the overall alignment behavior of interacting self‐propelling active swimmer and may find direct applications in guiding the design of active‐matter systems involving phoretic and hydrodynamic interactions.

Funder

Volkswagen Foundation

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3