Hypoxia‐induced oxidative stress promotes therapy resistance via upregulation of heme oxygenase‐1 in multiple myeloma

Author:

Abe Ko1,Ikeda Sho1ORCID,Nara Miho1,Kitadate Akihiro1ORCID,Tagawa Hiroyuki1,Takahashi Naoto1ORCID

Affiliation:

1. Department of Hematology Nephrology, and Rheumatology Akita University Graduate School of Medicine Akita Japan

Abstract

AbstractBackgroundMultiple myeloma (MM) is a hematopoietic malignancy for which proteasome inhibitors have become available in recent years. However, many patients develop resistance to these drugs during treatment. Therefore, it is important to elucidate the mechanisms underlying resistance acquisition by proteasome inhibitors. Side population (SP) cells, which have a high drug efflux capacity and hypoxic responses in the microenvironment have both provided important insights into drug resistance in MM; however, little is known about the characteristics of SP cells in hypoxic microenvironments.MethodsWe performed cDNA microarray analysis for SP and non‐SP obtained from RPMI‐8226 and KMS‐11 cell lines cultured for 48 h in normoxic and hypoxic conditions (1% O2). Genes specifically upregulated in hypoxic SP were examined.ResultsOur comprehensive gene expression analysis identified HMOX1, BACH2, and DUX4 as protein‐coding genes that are specifically highly expressed in SP cells under hypoxic conditions. We have shown that HMOX1/heme oxygenase‐1 (HMOX1/HO‐1) is induced by hypoxia‐inducible reactive oxygen species (ROS) and reduces ROS levels. Furthermore, we found that HMOX1 contributes to hypoxia‐induced resistance to proteasome inhibitors in vitro and in vivo. Excessive ROS levels synergistically enhance bortezomib sensitivity. In clinical datasets, HMOX1 had a strong and significantly positive correlation with MAFB but not MAF. Interestingly, hypoxic stimulation increased MAFB/MafB expression in myeloma cells; in addition, the knockdown of MAFB under hypoxic conditions suppressed HMOX1 expression.ConclusionThese results suggest that the hypoxia‐ROS‐HMOX1 axis and hypoxia‐induced MafB may be important mechanisms of proteasome inhibitor resistance in hypoxic microenvironments.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Cancer Research,Radiology, Nuclear Medicine and imaging,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3