Synergistic effects of vegetation restoration and check dams on water erosion in a slope‐gully system

Author:

Bai Lulu12,Shi Peng12ORCID,Li Zhanbin12,Li Peng12ORCID,Zhao Zhun12,Dong Jingbin12,Cui Lingzhou3,Niu Hongbo4,Zu Pengju5,Cao Manhong5

Affiliation:

1. State Key Laboratory of Eco‐hydraulics in Northwest Arid Region of China Xi'an University of Technology Xi'an 710048 PR China

2. Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions Xi'an 710048 PR China

3. College of Life and Environmental Science Wenzhou University Wenzhou 325035 PR China

4. Shaanxi Coalbed Methane Development Co., Ltd Xi'an 710119 PR China

5. Shaanxi Ecological Industry Co., Ltd Xi'an 710061 PR China

Abstract

AbstractRestoring vegetation and constructing check dams are important measures for controlling water erosion in slope‐gully systems. However, percolation through the dam body could lead to shortened runoff paths in the gully. Moreover, the synergistic effects of vegetation patterns and siltation‐induced runoff path length decrease (RPLD) in slope‐gully systems on reducing water erosion remain unclear. In this study, 20 physical models of slope‐gully systems were constructed to quantitatively evaluate the synergistic effect of these measures under simulated rainfall. The models included four slope vegetation patterns (no vegetation, up‐slope, middle‐slope, and down‐slope) and five levels of RPLD in the gully (0, 1, 2, 3, and 4 m). Owing to synergistic effects, combined measures led to a more considerable reduction in soil and water loss than a single measure. Furthermore, the synergistic effect was related to vegetation patterns and shorter siltation‐induced runoff paths. The mean synergistic effect produced the following runoff yield order: down‐slope (2.84%) > middle‐slope (2.81%) > up‐slope (1.78%); and 4 m (3.18%) > 3 m (2.66%) > 2 m (2.29%) > 1 m (1.78%). The sediment yields were in the following order: down‐slope (18.15%) > middle‐slope (12.63%) > up‐slope (6.67%), and 4 m (14.56%) > 3 m (12.82%) > 2 m (11.73%) > 1 m (10.82%). These results suggest that revegetation of the lower parts of the slope, along with check dams, will be more effective for controlling soil erosion. Such synergistic effects should be considered in future soil erosion modeling.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Soil Science,General Environmental Science,Development,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3