Multidimensional vibrational circular dichroism for insect wings: Comparison of species

Author:

Sato Hisako1ORCID,Koshoubu Jun2,Inoué Sayako3,Kawamura Izuru4,Yamagishi Akihiko5

Affiliation:

1. Faculty of Science Ehime University Matsuyama Japan

2. JASCO Corporation Hachioji Tokyo Japan

3. Geodynamics Research Center Ehime University Matsuyama Japan

4. Graduate School of Engineering Science Yokohama National University Yokohama Japan

5. Faculty of Medicine Toho University Ota‐ku Tokyo Japan

Abstract

AbstractThis study reports the microscopic measurements of vibrational circular dichroism (VCD) on four different insect wings using a quantum cascade laser VCD system equipped with microscopic scanning capabilities (named multi‐dimensional VCD [MultiD‐VCD]). Wing samples, including (i) beetle, Anomala albopilosa (female), (ii) European hornet, Verspa crabro flavofasciata Cameron, 1903 (female), (iii) tiny dragonfly, Nannophya pygmae Rambur, 1842 (male), and (iv) dragonfly, Symetrum gracile Oguma, 1915 (male), were used in this study. Two‐dimensional patterns of VCD signals (~10 mm × 10 mm) were obtained at a spatial resolution of 100 μm. Measurements covered the absorption peaks assigned to amides I and II in the range of 1500–1740 cm−1. The measurements were based on the enhancement of VCD signals for the stereoregular linkage of peptide groups. The patterns were remarkably dependent on the species. In samples (i) and (ii), the wings comprised segregated domains of protein aggregates of different secondary structures. The size of each microdomain was approximately 100 μm. In contrast, no clear VCD spectra were detected in samples (iii) and (iv). One possible reason was that the chain of stereoregular polypeptides was too short to achieve VCD enhancement in samples (iii) and (iv). Notably, the unique features were only observed in the VCD spectra because the IR spectra were nearly the same among the species. The VCD results hinted at the connection of protein microscopic structures with the wing flapping mechanisms of each species.

Funder

Japan Society for the Promotion of Science

Ehime University

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3