Asymmetric catalysis by chiral FLPs: A computational mini‐review

Author:

Patra Shanti Gopal1ORCID

Affiliation:

1. Department of Chemistry National Institute of Technology Silchar Silchar India

Abstract

AbstractSteric hindrance in Lewis acid (LA) and Lewis base (LB) obstruct the Lewis acid–base adduct formation, and the pair was termed as frustrated Lewis pair (FLP). In the past 16 years, the field of enantioselective catalysis by chiral FLPs has been slowly growing. It was shown that chiral LAs are significant as they are involved in the hydrogen transfer (HT) step to the imine, resulting in enantioselectivity. After H2 activation, the borohydride can exist in a number of plausible conformations and their stability is governed by the presence of noncovalent interaction through C–H····π and π····π interactions. However, LBs are not ideal for asymmetric induction as they compete with the imine substrate as a counter LB. Further, the proton transfer from chiral LB to the imine does not induce any chirality as chirality develops in the HT step. However, intramolecular FLPs with chiral scaffold are very efficient as they possess an optimum distance between LA and LB, which facilitates the H2 activation but precludes the adduct formation of the small molecules substrate with the LA component. This mini‐review summarizes computational investigation involving chiral LA and LB, and discusses intramolecular FLPs in the enantioselective catalysis.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3