Fabrication and investigation of physicochemical and biological properties of3Dprinted sodium alginate‐chitosan blend polyelectrolyte complex scaffold for bone tissue engineering application

Author:

Singh Amit Kumar1ORCID,Pramanik Krishna1ORCID

Affiliation:

1. Center of Excellence in Tissue Engineering, Department of Biotechnology & Medical Engineering National Institute of Technology Rourkela Rourkela Odisha India

Abstract

AbstractIn tissue engineering technique, a biological scaffold with appropriate composition and structure for promoting growth and differentiation of cells thereby regenerating damaged tissue, is a prime necessity. In this paper, 3D‐printed scaffolds comprising sodium alginate (SA) and chitosan (CH) biopolymers of natural origin are reported. Bioinks with varying ratios of SA and CH were prepared and scaffolds were fabricated by 3D printing. The fabricated scaffolds possess many desired properties that are vital for tissue regeneration purposes. The scaffolds possess open pore microstructures with interconnected pores and desired pore size as revealed by scanning electron microscopic image analysis. The polyelectrolyte complex formation (PEC) between SA and CH as revealed by Fourier‐transform‐infrared spectroscopic analysis is favorable as it offers a better surface for cell attachment and proliferation, and an ideal microenvironment for bone regeneration. Among the scaffolds, SA/CH with 60:40 showed controlled swelling and degradation behavior, with higher tensile strength of 0.387 ± 0.015 MPa. In vitro‐biomineralization showed superior apatite layer deposition ability over the SA/CH: 60/40 scaffold surface. The fabricated SA/CH scaffolds are hydrophilic and biocompatible as evident from the contact angle, protein adsorption, MTT assay, and cell attachment studies. However, SA/CH: 60/40 is shown to have superior biological properties compared with the other SA/CH compositions. Thus, it is concluded that 3Dv printed SA/CH: 60/40 scaffold having some superior properties and bioactivity can be used as a suitable matrix for future bone tissue regeneration applications.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3