Preparation of fluorinated epoxy‐phthalonitrile resins with excellent thermal stability and low dielectric constant

Author:

Dong Jinghui1ORCID,Sang Xiaoming1,Yin Weihao1,Chen Xinggang1ORCID

Affiliation:

1. College of Materials Science and Engineering North China University of Science and Technology Tangshan China

Abstract

AbstractFluoropolymers find applications in heat‐resistant cables, chemical‐resistant linings, electronic components, cladding materials, and weather‐resistant films. Therefore, it is imperative to improve their temperature resistance level and dielectric properties. In this study, a series of new fluorinated epoxy‐phthalonitrile resins with different mass ratios were prepared by adding phthalonitrile to the epoxy resin matrix, followed by a two‐step reaction of the amine with the epoxy resin at low temperature, and then by the reaction of the nitrile with the epoxy resin and the nitrile group at high temperature. The thermal stability and thermal oxidation stability of the cured products were improved; the initial decomposition temperature for 5% weight loss in air was 375.3°C, indicating good heat resistance performance. In addition, the glass transition temperature and storage modulus of the fluorinated epoxy‐phthalonitrile resins cured products increased with an increase in phthalonitrile content. The storage modulus remained above 1500 MPa until 150°C. The glass transition temperature of fluorinated epoxy‐phthalonitrile resins (at a mass ratio of 5:5) was 180°C, much higher than that of the epoxy resin (which was 140°C). Moreover, the dielectric constant of fluorinated phthalonitrile‐epoxy resin (5:5 mass ratio) was 2.01, which was 39.63% lower than that of fluorinated epoxy resin. The thermoset matrix has potential applications in the fabrication of a variety of low dielectric constant composites for electronic device related industries.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3