A novel pyrene‐based “off–on” fluorescent probe with high selectivity and sensitivity for Hg2+

Author:

Liang Qingxiang1,Zhou Wu1ORCID,Wu Aibin123ORCID,Shu Wenming13,Yu Weichu12

Affiliation:

1. School of Chemistry and Environmental Engineering Yangtze University Jingzhou China

2. Unconventional Oil and Gas Collaborative Innovation Center Yangtze University Jingzhou China

3. Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields Yangtze University Hubei China

Abstract

AbstractIn this article, a novel “off–on” fluorescent probe 2‐(pyren‐1‐ylmethylene)‐1H‐indene‐1,3(2H)‐dione (PID) for Hg2+ was designed and synthesized. The selectivity, concentration titration, pH titration, time dependence, limit of detection, and recognition mechanism of PID for Hg2+ in CH3CH2OH/H2O solution were also investigated. The results indicated that PID exhibited high selectivity, sensitivity, and fast response to Hg2+, and the limit of detection was as low as 20.7 nmol/L. In addition, PID could work in a wide pH range, and the determination of Hg2+ in water samples showed that it could be used as a potential detection tool in practical application.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3