Loading thionine onto MXene enhances electron transfer and ultrasensitive electrochemical detection of H2O2

Author:

Dong Shaoqing1ORCID,Sun Yue1,Liu Teng1ORCID,Wu Yongzheng1,Song Wenxu2,Zhou Qing1ORCID

Affiliation:

1. College of Chemistry and Material Science Shandong Agricultural University Taian China

2. College of Life Science Shandong Agricultural University Taian China

Abstract

AbstractAs an important reactive oxygen species (ROS) signal molecule in plant physiological regulation, H2O2 maintains cellular homeostasis through concentration regulation. It is worth paying attention to the concentration imbalance of H2O2 caused by various stresses, resulting in programed cell death or even developmental arrest in plants. To accurately quantify alterations in H2O2 concentration induced by these stress factors, and deeply understand the H2O2‐related physiological processes, a highly efficient hybrid electrode material of thionine@Ti3C2Tx (Th@MXene) composite was developed. MXene nanosheets not only performed as carriers with high specific surface area for loading Th but also contributed to the enhancement of electrical conductivity. Meanwhile, Th was uniformly loaded on the MXene surface, facilitating electron transport from the analyte to the modified electrode. Under the optimal detection conditions, the sensing electrode (Th@MXene/GCE) was employed to quantify H2O2 through Square‐wave Voltammetry signals with a good linear relationship (correlation coefficient is 0.9997), and a wide calibration range of the sensor was 0.1 to 10,000 nM. Above all, the detection limit can be as low as 34 pM, demonstrating excellent sensitivity. Additionally, the sensor exhibited repeatability in real samples, demonstrating exceptional practicality.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Science and Technology Support Plan for Youth Innovation of Colleges and Universities of Shandong Province of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3