Preparation of porous Cu‐rich CuNi electrodes via electrochemically dealloying in ionic liquid

Author:

Pan Yu‐Hsuan1,Yu Chia‐Lin1,Lee Chien‐Liang2,Chen Po‐Yu134ORCID

Affiliation:

1. Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung City Taiwan

2. Department of Chemical and Materials Engineering National Kaohsiung University of Science and Technology Kaohsiung City Taiwan

3. Department of Medical Research Kaohsiung Medical University Hospital Kaohsiung City Taiwan

4. Department of Chemistry National Sun Yat‐sen University Kaohsiung City Taiwan

Abstract

AbstractCommercial CuNi (55/45 wt%) alloy can be electrochemically dealloyed to be the porous Cu‐rich CuNi electrodes, which reveals an enhanced catalytic activity toward nitrate reduction in contrast with that of the mother alloy electrodes. In comparison with the use of aqueous electrolytes, the formation of the porous structures is reproducible if ionic liquid (IL) is used as the electrolyte for the dealloying process. During the dealloying process, a relatively more quantity of Ni but both Ni and Cu were electrochemically oxidized to be Ni(II) and Cu(II) complex ions; different ions seemed to own different coordinating molecules in accordance with the NMR analysis. Cu(II) ions could be reduced to Cu metal and deposited upon the counter electrode during the dealloying process. Ni(II) ions, on the other hand, can be mostly removed from the IL phase by extraction into the immiscible water phase. A sustainable system may be developed for the preparation of nitrate‐active electrodes in accordance with the study shown here.

Funder

Kaohsiung Medical University

Ministry of Science and Technology, Taiwan

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3