Effect of different substituted groups on excited state intramolecular proton transfer of BOHMB

Author:

Song Yaodong1ORCID,Wang Qianting23

Affiliation:

1. School of Electronic, Electrical Engineering and Physics Fujian University of Technology Fuzhou People's Republic of China

2. Xiamen University of Technology Xiamen People's Republic of China

3. Fujian Provincial Engineering Research Center of Die & Mold Fuzhou China

Abstract

AbstractThe photophysical features of 3‐(benzo[d]oxazol‐2‐yl)‐2‐hydroxy‐5‐methoxy benzaldehyde (BOHMB) were investigated through experimental (J. Phys. Chem. A 2019, 123, 10,246–10,253) and theoretical (Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 266, 120,406) methods. However, the effect of substituent groups on the excited state proton transfer process has not been studied. In this work, the excited state intramolecular proton transfer (ESIPT) dynamics and photophysical properties of BOHMB with different substituent groups were investigated by density‐functional theory (DFT) and time‐dependent DFT (TDDFT) methods at CAM‐B3LYP/6‐311G(d,p) level. The primary parameters related to hydrogen bonding and infrared vibration frequency were obtained to understand the ESIPT properties of BOHMB derivatives. The results indicate that the excited‐state intramolecular hydrogen bond (ESIHB) strengthening behaviors, and the intramolecular hydrogen bond O1–H2···O3 for 1a in the S1 state is the strongest among BOHMB derivatives. From the calculated potential energy curves, it can be inferred that the substitution and position of NH2 and NO2 groups will regulate the excited‐state energy barrier and thus affect the ESIPT process. The molecular absorption peak and fluorescence peak are affected by different substituting groups and different positions.

Funder

Natural Science Foundation of Fujian Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3