Theoretical study of the absorption and emission spectrum and non‐adiabatic excited state dynamics of gas‐phase xanthone

Author:

Chin Chih‐Hao12ORCID,Zhu Tong12ORCID,Zhang John Zeng Hui123ORCID

Affiliation:

1. School of Chemistry and Molecular Engineering East China Normal University Shanghai China

2. NYU‐ECNU Center for Computational Chemistry at NYU Shanghai Shanghai China

3. Shenzhen Institute of Synthetic Biology and Faculty of Synthetic Biology Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China

Abstract

AbstractThe ground, singlet, and triplet excited state structures (S1, S2, T1, and T2) of xanthone have been calculated and characterized in the adiabatic representation by using time‐dependent density functional theory (TDDFT). However, the fast intramolecular transition mechanisms of xanthone are still under debate, and so we perform non‐adiabatic excited state dynamics of the photochemistry of xanthone gas phase and find that it follows El‐Sayed's rule. Electronic transition mechanism of xanthone is sequential from the S2 state: the singlet internal conversion (IC) time from S2 (1ππ*) to S1 (1*) is 3.85 ps, the intersystem crossing (ISC) from S1 (1*) to T2 (3ππ*) takes 4.76 ps, and the triplet internal conversion from T2 (3ππ*) to T1 (3*) takes 472 fs. The displaced oscillator, Franck–Condon approximation, and one‐photon excitation equations were used to simulate the absorption spectra of S0 → S2 transition, with v55 being most crucial for S0 structure; the fluorescence spectra of S1 → S0 transition with v47 for S1; and the phosphorescence spectra of T1 → S0 transition with v4 for T1. Our method can reproduce the experimental absorption, fluorescence, and phosphorescence spectra of gas‐phase xanthone.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3