Synthesis and characterization of CuxCd1‐xS nanocrystals into functionalized nitrile butadiene rubber matrix

Author:

Balayeva Ofeliya O.1ORCID,Azizov Abdulsaid A.1,Muradov Mustafa B.2,Alosmanov Rasim M.1,Eyvazova Goncha M.2,Gahramanli Lala R.2,Gasimov Rashid J.3,Bayramov Mahammad A.3

Affiliation:

1. Department of Chemistry Baku State University Baku Azerbaijan

2. Nano Research Center Baku State University Baku Azerbaijan

3. Institute of Radiation Problems of the ANAS Baku Azerbaijan

Abstract

AbstractIntroductionPolymetallic sulfides and heterostructures like CdIn2S4, CdZnS2, CuxS‐NiySz, Cu2CoSnS4, CoNi2S4, Zn0.76Co0.24S have been fabricated with various shapes and forms for new applications. Ternary copper cadmium sulfides (CuCdS2) are a p‐type semiconductor with a direct band gap of about 2.4 eV forms very good nanocrystals like copper sulfide could be potentially applied to optical and electronic applications. Knowing that the SILAR synthesis, optical, paramagnetic, dielectric properties, and annealing of copper cadmium sulfides have not been sufficiently investigated, they are extensively analyzed and studied in the present work.ObjectivesCuxCd1−xS (x = 0, 0.5, and 1) nanoparticles have been synthesized on the base of functionalized nitrile butadiene rubber by SILAR method and characterized using scanning electron microscopy, x‐ray diffractometer, UV–visible spectroscopy, Fourier‐transform infrared spectroscopy, electron paramagnetic resonance spectroscopy, and Raman spectroscopy. Effects of cycles, reaction time, and precursor concentration on the particle size, crystal growth and structure, bandgap energy, dielectric and paramagnetic properties, elemental composition, and morphology were investigated.MethodsThe synthesis of CuxCd1−xS nanocrystals was carried out into the obtained functional polymer matrix by SİLAR method. The functional polymer (FNBR) is a dark brown powder which contains ‐PO(OH)2 and ‐OPO(OH)2 functional groups and does not dissolve in organic and inorganic solvents, can be used as a very good stabilizer of nanostructures. The synthesis of CuxCd1−xS/FNBR nanocompsite was carried out in 3, 5, and 15 cycles.Results and discussionIn the process of ternary sulfide formation, the nucleation rate of CdS was high at the beginning of the reaction, while the growth rate and stability of CuS were high in the later course of the reaction. The average crystallite size of the nancrystallites has been increased from 1.13 nm to 7.39 nm by the increasing of the number of cycles from 5 to 15, respectively. It is explained by the inclusion of copper in the composition and getting more stable material. Copper cadmium sulfide nanostructures demonstrate wide band gap energy (~3.7 eV) in this work which is explained by the formation of nanosized particles in a limited volume of FNBR matrix.ConclusionsThe synthesis of CuxCd1‐xS nanocrystals was carried out into the obtained functional polymer matrix by SİLAR method. Strong diffraction peaks corresponding to cubic CdS are found with low SILAR cycles. SEM images of CuxCd1−xS/FNBR nanocomposite show that the atomic percentage of Cu and Cd into the ternary sulfide is 20.19% and 0.61%, respectively. It is explained by the inclusion of copper in the composition and getting more stable material with low solubility products (Ksp) which is in good agreement with XRD results. The calculated band gaps are higher than that of bulk CdS, CuS, and CuCdS2. Larger band gap is usually reported for defects or structural disorders, which is in good agreement with XRD and Raman results.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3