Covalent organic frameworks and metal–organic frameworks for sustainable adsorptive removal/extraction of dirty dozen chemicals: A review

Author:

Emmanuel Stephen Sunday1ORCID,Aniekezie Favour Chizoba2,Adesibikan Ademidun Adeola1

Affiliation:

1. Department of Industrial Chemistry, Faculty of Physical Sciences University of Ilorin Ilorin Nigeria

2. Department of Chemistry, Faculty of Education Nnamdi Azikiwe University Awka Nigeria

Abstract

AbstractDirty dozen chemicals (DDCs) are a group of 12 extremely toxic chemicals that were recognized at the Stockholm convention in 2001 for their severe impact on the ecosystem and human health. Despite the embargo and restraint placed on DDCs usage, these chemicals continue to find their way into the ecosystem because they are still secretly or openly applied by many nations, especially in African regions. Moreover, DDCs can still be perceived where they have been employed previously before the Stockholm convention treaty due to their persistent profile. This study aimed to critically review original works directed toward the removal of various dirty dozen chemicals using covalent and metal–organic frameworks (COFs and MOFs). Specifically, in this study, various COFs/MOFs and their composites with remarkably tailored adsorptive profiles are evaluated for their adsorption efficiency for different DDCs. In addition, the effect of various operating parameters that are of importance to environmentalists and various stakeholders for optimization purposes was empirically discussed. This review also fills knowledge vacuums about the COF/MOF‐DDCs adsorption process, offers insights into their reusability potential, fundamental mechanism, isotherm, and kinetic modeling, and offers a framework for future studies. Findings from this study revealed that COF and MOF have high DDC removal capacity and reusability potential attributed to their admirable porosity and the existence of a plethora of oxygen‐rich functional groups that allow for better interactions with DDCs through chelation, halogen bonding, H‐bonding, and π‐π interactions and stacking. This points to the upscaling potential of this remediation technique. Future researchers need to direct more efforts to the use of density functional theory for mechanism interpretation, exploration of hybrid technology, cost analysis, scalability, isotherm, thermodynamics, adsorption, and desorption kinetic modeling.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3