The Effects of Platelet-Derived Growth Factor-BB on Human Dental Pulp Stem Cells Mediated Dentin-Pulp Complex Regeneration

Author:

Zhang Maolin12,Jiang Fei234,Zhang Xiaochen25,Wang Shaoyi25,Jin Yuqin2,Zhang Wenjie12,Jiang Xinquan12

Affiliation:

1. a Department of Prosthodontics, Shanghai, People's Republic of China

2. b Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, People's Republic of China

3. c Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China

4. d Department of Polyclinic, Affiliated Hospital of Stomatology, Nanjing, People's Republic of China

5. e Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China

Abstract

Abstract Dentin-pulp complex regeneration is a promising alternative treatment for the irreversible pulpitis caused by tooth trauma or dental caries. This process mainly relies on the recruitment of endogenous or the transplanted dental pulp stem cells (DPSCs) to guide dentin-pulp tissue formation. Platelet-derived growth factor (PDGF), a well-known potent mitogenic, angiogenic, and chemoattractive agent, has been widely used in tissue regeneration. However, the mechanisms underlying the therapeutic effects of PDGF on dentin-pulp complex regeneration are still unclear. In this study, we tested the effect of PDGF-BB on dentin-pulp tissue regeneration by establishing PDGF-BB gene-modified human dental pulp stem cells (hDPSCs) using a lentivirus. Our results showed that PDGF-BB can significantly enhance hDPSC proliferation and odontoblastic differentiation. Furthermore, PDGF-BB and vascular endothelial growth factor (VEGF) secreted by hDPSCs enhanced angiogenesis. The chemoattractive effect of PDGF-BB on hDPSCs was also confirmed using a Transwell chemotactic migration model. We further determined that PDGF-BB facilitates hDPSCs migration via the activation of the phosphatidylinositol 3 kinase (PI3K)/Akt signaling pathway. In vivo, CM-DiI-labeled hDPSCs were injected subcutaneously into mice, and our results showed that more labeled cells were recruited to the sites implanted with calcium phosphate cement scaffolds containing PDGF-BB gene-modified hDPSCs. Finally, the tissue-engineered complexes were implanted subcutaneously in mice for 12 weeks, the Lenti-PDGF group generated more dentin-like mineralized tissue which showed positive staining for the DSPP protein, similar to tooth dentin tissue, and was surrounded by highly vascularized dental pulp-like connective tissue. Taken together, our data demonstrated that the PDGF-BB possesses a powerful function in prompting stem cell-based dentin-pulp tissue regeneration.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Young Elite Scientist Sponsorship Program

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3