Affiliation:
1. a Department of Biology University of Kentucky, Lexington, Kentucky, USA
Abstract
Abstract
Despite approaches in regenerative medicine using stem cells, bio-engineered scaffolds, and targeted drug delivery to enhance human tissue repair, clinicians remain unable to regenerate large-scale, multi-tissue defects in situ. The study of regenerative biology using mammalian models of complex tissue regeneration offers an opportunity to discover key factors that stimulate a regenerative rather than fibrotic response to injury. For example, although primates and rodents can regenerate their distal digit tips, they heal more proximal amputations with scar tissue. Rabbits and African spiny mice re-grow tissue to fill large musculoskeletal defects through their ear pinna, while other mammals fail to regenerate identical defects and instead heal ear holes through fibrotic repair. This Review explores the utility of these comparative healing models using the spiny mouse ear pinna and the mouse digit tip to consider how mechanistic insight into reparative regeneration might serve to advance regenerative medicine. Specifically, we consider how inflammation and immunity, extracellular matrix composition, and controlled cell proliferation intersect to establish a pro-regenerative microenvironment in response to injuries. Understanding how some mammals naturally regenerate complex tissue can provide a blueprint for how we might manipulate the injury microenvironment to enhance regenerative abilities in humans.
Funder
National Science Foundation
Office for International Science and Engineering
National Institute of Arthritis and Musculoskeletal and Skin Diseases
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,Developmental Biology,General Medicine
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献