Transforming Growth Factor-β-Induced KDM4B Promotes Chondrogenic Differentiation of Human Mesenchymal Stem Cells

Author:

Lee Hye-Lim1,Yu Bo1,Deng Peng12,Wang Cun-Yu1,Hong Christine13

Affiliation:

1. Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry and Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, California, USA

2. State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, SiChuan University, Chengdu, Sichuan Province, China

3. Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA

Abstract

Abstract The high prevalence of cartilage diseases and limited treatment options create a significant biomedical burden. Due to the inability of cartilage to regenerate itself, introducing chondrocyte progenitor cells to the affected site is of significant interest in cartilage regenerative therapies. Tissue engineering approaches using human mesenchymal stem cells (MSCs) are promising due to their chondrogenic potential, but a comprehensive understanding of the mechanisms governing the fate of MSCs is required for precise therapeutic applications in cartilage regeneration. TGF-β is known to induce chondrogenesis by activating SMAD signaling pathway and upregulating chondrogenic genes such as SOX9; however, the epigenetic regulation of TGF-β-mediated chondrogenesis is not understood. In this report, we found that TGF-β dramatically induced the expression of KDM4B in MSCs. When KDM4B was overexpressed, chondrogenic differentiation was significantly enhanced while KDM4B depletion by shRNA led to a significant reduction in chondrogenic potential. Mechanistically, upon TGF-β stimulation, KDM4B was recruited to the SOX9 promoter, removed the silencing H3K9me3 marks, and activated the transcription of SOX9. Furthermore, KDM4B depletion reduced the occupancy of SMAD3 in the SOX9 promoter, suggesting that KDM4B is required for SMAD-dependent coactivation of SOX9. Our results demonstrate the critical role of KDM4B in the epigenetic regulation of TGF-β-mediated chondrogenic differentiation of MSCs. Since histone demethylases are chemically modifiable, KDM4B may be a novel therapeutic target in cartilage regenerative therapy.

Funder

NIH/NIDCR

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3