Human umbilical tissue-derived cells rescue retinal pigment epithelium dysfunction in retinal degeneration

Author:

Cao Jing1,Murat Christopher2,An Weijun2,Yao Xiang3,Lee John1,Santulli-Marotto Sandra1,Harris Ian R.1,Inana George2

Affiliation:

1. Janssen Research and Development, LLC, Spring House, Pennsylvania, USA

2. Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA

3. Janssen Research and Development, LLC, San Diego, California, USA

Abstract

Abstract Retinal pigment epithelium (RPE) cells perform many functions crucial for retinal preservation and vision. RPE cell dysfunction results in various retinal degenerative diseases, such as retinitis pigmentosa and age-related macular degeneration (AMD). Currently, there are no effective treatments for retinal degeneration except for a small percentage of individuals with exudative AMD. Cell therapies targeting RPE cells are being developed in the clinic for the treatment of retinal degeneration. Subretinal injection of human umbilical tissue-derived cells (hUTC) in the Royal College of Surgeons (RCS) rat model of retinal degeneration was shown to preserve photoreceptors and visual function. However, the precise mechanism remains unclear. Here, we demonstrate that hUTC rescue phagocytic dysfunction in RCS RPE cells in vitro. hUTC secrete receptor tyrosine kinase (RTK) ligands brain-derived neurotrophic factor (BDNF), hepatocyte growth factor (HGF), and glial cell-derived neurotrophic factor (GDNF), as well as opsonizing bridge molecules milk-fat-globule-epidermal growth factor 8 (MFG-E8), growth arrest-specific 6 (Gas6), thrombospondin (TSP)-1, and TSP-2. The effect of hUTC on phagocytosis rescue in vitro is mimicked by recombinant human proteins of these factors and is abolished by siRNA-targeted gene silencing in hUTC. The bridge molecules secreted from hUTC bind to the photoreceptor outer segments and facilitate their ingestion by the RPE. This study elucidates novel cellular mechanisms for the repair of RPE function in retinal degeneration through RTK ligands and bridge molecules, and demonstrates the potential of using hUTC for the treatment of retinal degenerative diseases.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3