Transfer learning for anatomical structure segmentation in otorhinolaryngology microsurgery

Author:

Ding Xin1ORCID,Huang Yu1ORCID,Zhao Yang1,Tian Xu1,Feng Guodong1,Gao Zhiqiang1

Affiliation:

1. Department of Otorhinolaryngology Head and Neck Surgery The Peking Union Medical College Hospital Beijing China

Abstract

AbstractBackgroundReducing the annotation burden is an active and meaningful area of artificial intelligence (AI) research.MethodsMultiple datasets for the segmentation of two landmarks were constructed based on 41 257 labelled images and 6 different microsurgical scenarios. These datasets were trained using the multi‐stage transfer learning (TL) methodology.ResultsThe multi‐stage TL enhanced segmentation performance over baseline (mIOU 0.6892 vs. 0.8869). Besides, Convolutional Neural Networks (CNNs) achieved a robust performance (mIOU 0.8917 vs. 0.8603) even when the training dataset size was reduced from 90% (30 078 images) to 10% (3342 images). When directly applying the weight from one certain surgical scenario to recognise the same target in images of other scenarios without training, CNNs still obtained an optimal mIOU of 0.6190 ± 0.0789.ConclusionsModel performance can be improved with TL in datasets with reduced size and increased complexity. It is feasible for data‐based domain adaptation among different microsurgical fields.

Funder

Fundamental Research Funds for the Central Universities

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3