Future precipitation changes in California: Comparison of CMIP5 and CMIP6 intermodel spread and its drivers

Author:

Petrova Desislava1ORCID,Tarin‐Carrasco Patricia1,Sekulic Aleksandar2,Lukovic Jelena3,Reniu Maria Gali4,Rodo Xavier15,Cvijanovic Ivana1

Affiliation:

1. Climate and Health Group, CANU Barcelona Institute for Global Health (ISGlobal) Barcelona Catalonia Spain

2. Faculty of Civil Engineering University of Belgrade Belgrade Serbia

3. Faculty of Geography University of Belgrade Belgrade Serbia

4. Faculty of Physics University of Barcelona Barcelona Catalonia Spain

5. ICREA Barcelona Catalonia Spain

Abstract

AbstractCalifornia is one of the major uncertainty hotspots for climate change, as climate models have historically been split between projecting wetter and drier future conditions over the region. We analysed the future (mid‐century and end‐century) projections of California's winter precipitation changes from the latest Coupled Model Intercomparison Project Phase 6 (CMIP6), and studied its respective model agreement in comparison to the previous CMIP5 projections. Over northern California more than two thirds of the models in each ensemble agree on wetter future conditions. However, over southern California both ensembles show highly uncertain precipitation changes, with model projections almost equally divided between wetter or drier conditions. Projected end‐century precipitation changes range from −30% to +70% in CMIP5 and −20% to +80% in CMIP6. The CMIP6 ensemble mean changes are generally wetter and show larger model disagreement compared to CMIP5. Distribution of year‐to‐year precipitation indicates more extremely wet or dry years over southern California in CMIP6 compared to CMIP5, with some models suggesting that the five wettest years account for as much as ~55% of the 20‐year rainfall, and the five driest for as little as ~5%. Dynamically, both ensembles project weakened subsidence over Baja California that is stronger in CMIP6 than in CMIP5, in line with the wetter mean conditions in CMIP6. In the western tropical Pacific we find strengthening of the Hadley circulation in CMIP6 that is not seen in CMIP5, and more El Niño than La Niña conditions in the equatorial Pacific. More CMIP6 models also project an increase in ENSO events compared to CMIP5, and a stronger impact of ENSO on California's precipitation is found in CMIP6 than in CMIP5. These factors also contribute to larger model disagreement and more extremely wet or dry years over southern California in CMIP6.

Funder

University of Belgrade

Generalitat de Catalunya

Publisher

Wiley

Reference111 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3