Dynamic mechanical, ballistic and tribological behavior of luffa aegyptiaca fiber reinforced coco husk biochar epoxy composite

Author:

Rao H. Jeevan1,Nagabhooshanam N.2ORCID,Kumar D. Sendil3,Sahu Santosh Kumar4,Verma Rajesh5,Jyothirmai Gandeti2,Ravindra Manam2,Mohanavel V.67

Affiliation:

1. Department of Aerospace Engineering and International Institute of Aerospace Engineering and Management Jain University, Jain Global Campus Bengaluru India

2. Department of Mechanical Engineering Aditya Engineering College Surampalem Andhra Pradesh India

3. Department of Engineering and science education Senthil College of Education Puducherry India

4. Department of Mechanical Engineering Veer Surendra Sai University of Technology Burla Odisha India

5. Department of Electrical Engineering, College of Engineering King Khalid University Kingdom of Saudi Arabia

6. Centre for Materials Engineering and Regenerative Medicine Bharath Institute of Higher Education and Research Chennai India

7. Department of Mechanical Engineering Chandigarh University Mohali India

Abstract

AbstractIn the current work, light weight epoxy bio‐composites are created for low‐cost technological applications using luffa aegyptiaca fiber and biochar particles derived from coco husk (CHB). This study aims to evaluate the effects of CHB particles added at different concentrations (3 vol% and 5 vol%) on the dynamic mechanical, ballistic and tribology behavior of epoxy composites constructed from luffa aegyptiaca fiber with different fiber loading (20%, 30% and 40 vol%). The composites are prepared using hand layup process provided with post curing operation. The combination of 3 vol% CHB particles and 40 vol% luffa aegyptiaca fiber having the improved viscoelastic properties by means of high storage modulus (5.05 GPa) and low loss factor (0.31). Moreover, this composite shows better ballistic properties in terms of low velocity impact energy (17.1 J). The optical image of impact damage behavior shows minimum damage of impactor on the composite and penetration effect found to be lower. This luffa aegyptiaca fiber reinforced epoxy composite also shows the lowest value of coefficient of friction (COF) with 0.48 and the lowest specific wear rate of 0.011 mm3/Nm. These epoxy composites made from luffa aegyptiaca fiber and CHB particles may be useful in a variety of engineering applications that can use materials for manufacture sporting goods, home furnishings, food packaging, and transportation.

Funder

King Khalid University

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3