Inclusion of binary proxy variables in logistic regression improves treatment effect estimation in observational studies in the presence of binary unmeasured confounding variables

Author:

Rosenbaum Cornelius1ORCID,Yu Qingzhao1ORCID,Buzhardt Sarah2,Sutton Elizabeth3,Chapple Andrew G.4ORCID

Affiliation:

1. Biostatistics Program, School of Public Health LSU Health Sciences Center New Orleans Louisiana USA

2. Department of Obstetrics and Gynecology Louisiana State University Health Sciences Center Baton Rouge Louisiana USA

3. Woman's Hospital Research Center Woman's Hospital Baton Rouge Louisiana USA

4. Department of Interdisciplinary Oncology, School of Medicine LSU Health Sciences Center New Orleans Louisiana USA

Abstract

AbstractWe present a simulation study and application that shows inclusion of binary proxy variables related to binary unmeasured confounders improves the estimate of a related treatment effect in binary logistic regression. The simulation study included 60,000 randomly generated parameter scenarios of sample size 10,000 across six different simulation structures. We assessed bias by comparing the probability of finding the expected treatment effect relative to the modeled treatment effect with and without the proxy variable. Inclusion of a proxy variable in the logistic regression model significantly reduced the bias of the treatment or exposure effect when compared to logistic regression without the proxy variable. Including proxy variables in the logistic regression model improves the estimation of the treatment effect at weak, moderate, and strong association with unmeasured confounders and the outcome, treatment, or proxy variables. Comparative advantages held for weakly and strongly collapsible situations, as the number of unmeasured confounders increased, and as the number of proxy variables adjusted for increased.

Funder

National Science Foundation

Publisher

Wiley

Subject

Pharmacology (medical),Pharmacology,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3