Colorectal Cancer Stem Cells Acquire Chemoresistance Through the Upregulation of F-Box/WD Repeat-Containing Protein 7 and the Consequent Degradation of c-Myc

Author:

Izumi Daisuke12,Ishimoto Takatsugu134ORCID,Miyake Keisuke14,Eto Tsugio14,Arima Kota14,Kiyozumi Yuki1,Uchihara Tomoyuki14,Kurashige Junji1,Iwatsuki Masaaki1,Baba Yoshifumi1,Sakamoto Yasuo1,Miyamoto Yuji1,Yoshida Naoya1,Watanabe Masayuki15,Goel Ajay2,Tan Patrick3,Baba Hideo1

Affiliation:

1. a Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan

2. b Center for Gastrointestinal Research and Center for Translational Genomics and Oncology, Baylor Scott and White Research Institute and Charles A. Sammons Cancer Center, Dallas, Texas, USA

3. c Cancer and Stem Cell Biology Program, Duke-NUS Medical School Singapore, Singapore

4. d The International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan

5. e Gastroenterological Surgery, The Cancer Institute Hospital of JCFR, Tokyo, Japan

Abstract

Abstract The cancer stem cell (CSC) paradigm suggests that tumors are organized hierarchically. Chugai previously established an LGR5+ human colorectal cancer (CRC) stem-cell-enriched cell line (colorectal CSCs) that expresses well-accepted colorectal CSC markers and that can dynamically switch between proliferative and drug-resistant noncycling states. We performed this study to elucidate the molecular mechanisms responsible for evading cell death in colorectal CSCs mediated by anticancer agents. During the cell cycle arrest caused by anticancer agents, we found that c-Myc expression was substantially decreased in colorectal CSCs. The c-Myc expression alterations were mediated by upregulation of F-box/WD repeat-containing protein 7 (FBXW7), as evidenced through FBXW7-small interfering RNA knockdown experiments that resulted in enhanced cell sensitivity to anticancer agents. Upregulation of FBXW7 following drug treatment was not evident in commercially available cancer cell lines. Colorectal CSCs were induced to differentiation by Matrigel and fetal bovine serum. Differentiated CSCs treated with anticancer agents did not show upregulation of FBXW7 and were more sensitive to irinotecan (CPT-11), highlighting the potential CSC-specific nature of our data. The FBXW7 over-expression was further validated in resected liver metastatic sites in CRC patients after chemotherapy. In conclusion, our study revealed that a CSC-specific FBXW7-regulatory mechanism is strongly associated with resistance to chemotherapeutic agents. Inhibition of FBXW7-upregulation in CSCs following chemotherapy may enhance the response to anticancer agents and represents an attractive strategy for the elimination of colorectal CSCs.

Funder

JSPS KAKENHI

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3