A benchmarking approach for comparing data splitting methods for modeling water resources parameters using artificial neural networks
Author:
Affiliation:
1. School of Civil Environmental and Mining Engineering; University of Adelaide; Adelaide South Australia Australia
2. Veolia Water Asia-Pacific; Technical Department; Shanghai China.
Publisher
American Geophysical Union (AGU)
Subject
Water Science and Technology
Link
http://onlinelibrary.wiley.com/wol1/doi/10.1002/2012WR012713/fullpdf
Reference44 articles.
1. Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting;Abrahart;Prog. Phys. Geogr.,2012
2. A new look at the statistical model identification;Akaike;IEEE Trans. Autom. Control,1974
3. Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions;Anctil;Hydrol. Earth Syst. Sci.,2004
4. Artificial neural networks in hydrology. II: Hydrologic applications;ASCE Task Committee on Application of Artificial Neural Networks in Hydrology;J. Hydrol. Eng.,2000a
5. Artificial neural networks in hydrology. I: Preliminary concepts;ASCE Task Committee on Application of Artificial Neural Networks in Hydrology;J. Hydrol. Eng.,2000b
Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Streamflow prediction model for agriculture dominated tropical watershed using machine learning and hierarchical predictor selection algorithms;Journal of Hydrology: Regional Studies;2024-08
2. Enhancing Streamflow Prediction Physically Consistently Using Process-Based Modeling and Domain Knowledge: A Review;Sustainability;2024-02-06
3. A benchmark-based method for evaluating hyperparameter optimization techniques of neural networks for surface water quality prediction;Frontiers of Environmental Science & Engineering;2024-01-20
4. Troubles in the Paradise: Hydrology Does not Respond to Newtonian Mechanics and the Rise of Machines;Lecture Notes in Civil Engineering;2024
5. Value of process understanding in the era of machine learning: A case for recession flow prediction;Journal of Hydrology;2023-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3